New microbial management techniques for improved outputs in fish and crustacean hatcheries

Patrick Sorgeloos, Peter Bossier and Peter De Schryver on behalf of the Ghent University Aquaculture R&D Consortium

Coloquio Internacional "Brechas de Investigación en larvicultura de peces"

Sede Puerto Montt Instituto de

Acuicultura

18 enero 2017

Predictable & cost-effective availability of high-quality fry, fingerlings, postlarvae, seed, spores, ...

THE key to successfull aquaculture!

Priorities for future aquaculture

Improved / more cost-effective SEED PRODUCTION

example:

Sea bass/bream larviculture in the Mediterranean

- annual production of 1 billion fry
- market value of 15 Euro cents a piece
- average survival 20 % by day 60
- low survival = critical bottleneck for future cost efficiency and sustainability of the industry
- microbial interference considered to be the main culprit
- no selected breeds available yet

NEW APPROACH IN THE STUDY OF HOST-MICROBE INTERACTIONS

Gnotobiotic culture of Artemia

Development of innovative microbial management systems

ARTEMIA AS MODEL SYSTEM IN LARVICULTURE RESEARCH

host-microbe interactions

→ Influencing microbial numbers or activity

- quorum sensing / quorum quenching
- Poly-β-hydroxybutyrate

→ Stimulating the host's immune response

- ☐ heat shock proteins
- yeast cell wall-bound glucan

Quorum Sensing (QS)

bacteria **sense and respond** to environmental changes and to each other through **extracellular**

signal molecules ≈ hormones in higher organisms

QS-disruption to control bacterial infections

- ☐ use of QS inhibitors (e.g. plant extracts)
- degradation of QS signals by other bacteria

Artemia Vibrio harveyi

Macrobrachium Vibrio harveyi

Burbot Aeromonas hydrophila

Crustaceans: 10-100 μM

Fish: 0.01 μM

Empirical observations of the strategy of microbial-matured water

- Algae-rich greenwater systems
- Probiotics
- Recirculation systems
- Biofloc systems
- Tilapia co-culture

Production

Do current pond culture practices sustain Early Mortality Syndrome in shrimp farming?

Redrafted after: De Schryver et al. (2014) Early Mortality Syndrome Outbreaks: a Microbial Management Issue in Shrimp Farming? PLOS Pathogens, doi: 10.1371/journal.ppat.1003919

Summary:

The early mortality syndrome (EMS) is without any doubt the most frequently discussed topic in the shrimp culture

Initiatives such a FAO/MARD Workshop on EN bring together stakeholders in ar formulate sugges to deal with this problem. But cou the currently strategies appropriate?

Peter De Schryver Tom Defoirdt Patrick Sorgeloos

Various Critical - Multifactorial Causes?

microbial diversity & stability compromised?

mature/aged water versus facilitating opportunitistic bacteria (Vibrio spp.)

fry/postlarval competence compromised?

production cost savings (dietary treatments, stocking stage, ...)

Larval microbial community Large temporal variation

K-selection: Microbial maturation

Effects on the microbial community composition of the incoming water:

A more stable, even and diverse community dominated by slowgrowing specialists

Significantly higher survival Survival to day 60 ph (end of experiment)

Effect on the fish (cod larvae):

larval microbiota similar to live food microbiota

larval and water microbiota similar

Current aquaculture systems (hatchery tank or pond)

_

random-mixed microbial community

What do we want???

What happens at the microbial level upon disinfection?

- all bacteria, including obligate pathogens are eliminated
- but, new bacterial colonization starts and fertilization/feeding will stimulate growth of bacteria: :

difference between r-strategists (22) and K-strategists (39)!!!!

ecological characteristics of

	r-strategist bacteria	K-strategist bacteria
Growth rate	HIGH	LOW
Effect of enrichment	RAPID GROWTH	SLOW GROWTH
Competitive ability: High substrate/indiv Low substrate/indiv	HIGH LOW	LOW HIGH
Importance for fish/shrimp larvae	Dangerous (opportunistic pathogens)	Generally harmless

What happens in reality at the microbial level in hatchery tanks upon refilling and restocking?

initially: low number of bacteria but lots of nutrients (food/feed) → stimulates r-strategist bacteria

substrate per bacterium = HIGH; niches are open

What happens in reality at the microbial level in hatchery tanks upon refilling and restocking?

in the mean time: → K-strategist bacteria grow slowly

What happens in reality at the microbial level in hatchery tanks upon refilling and restocking?

extra dimension: water exchange results in wash-out of bacteria → K-strategists cannot dominate

What happens in reality at the microbial level in hatchery tanks upon refilling and restocking?

introduction of animals:

→ always when r-strategists dominate

How to control opportunist bacteria in hatchery tanks

application of recirculation technology with biofilter

How to control opportunist bacteria in hatchery tank?

- → application of recirculation technology with biofilter
- → succession of r-strategist and K-strategist populations
- → finally, all niches taken and no space for new r-strategists

Substrate **perparaties per bak@Muknstriategistnjægeslaviæih**abkpands

Changes in bacterial communities (DGGE)

week 1 week 2 week 3

Rotifer production at 3000 ind./ml stocking density

Coloquio Internacional "Brechas de Investigación en larvicultura de peces"

Sede Puerto Montt

Instituto de Acuicultura

18 enero 2017

09-PDAC-6912-02